Monodisperse Nanoparticles of Poly(ethylene glycol) Macromers and N-Isopropyl Acrylamide for Biomedical Applications
نویسندگان
چکیده
Poly(ethylene glycol)-based nanoparticles have received significant attention in the field of biomedicine. When they are copolymerized with pHor temperature-sensitive comonomers, their small size allows them to respond very quickly to changes in the environment, including changes in the pH, ionic strength, and temperature. In addition, the high surface-to-volume ratio makes them highly functionalized. In this work, nanoparticles composed of temperature-sensitive poly(N-isopropylacrylamide), poly(ethylene glycol) 400 dimethacrylate, and poly(ethylene glycol) 1000 methacrylate were prepared by a thermally initiated, free-radical dispersion polymerization method. The temperature-responsive behavior of the hydrogel nanoparticles was characterized by the study of their particle size with photon correlation spectroscopy. The size of the nanoparticles varied from 200 to 1100 nm and was a strong function of the temperature of the system, from 5 to 40°C. The thermal, structural, and morphological characteristics were also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1678–1684, 2003
منابع مشابه
Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide.
A series of nanospheres composed of temperature-sensitive poly(N-isopropylacrylamide), poly(ethylene glycol) 400 dimethacrylate, and poly(ethylene glycol) 1000 methacrylate was prepared by a thermally-initiated free radical dispersion polymerization method. Insulin was loaded into the nanoparticles by equilibrium partitioning. The loading capacity of insulin into the nanoparticles was 2.1% (2.1...
متن کاملSynthesis of Thermoresponsive Copolymers Composed of Poly(ethylene glycol) and Poly(N-isopropyl acrylamide) for Cell Encapsulation
Thermoresponsive copolymers of poly(Nisopropyl acrylamide) (PNIPAm) and poly(acrylamide) microgels copolymerized with poly(ethylene glycol)(PEG) chains were synthesized by free-radical photopolymerization. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers with varying number-average molecular weights were used (Mn = 300 and 1,000 g/mol). A simple microarray technique coupled...
متن کاملRoom-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared at room temperature and characterized for the purpose of biomedical applications. The particles were synthesized by the hydrolysis of tetramethyl orthosilicate (TMOS) in alcohol media under catalysis by ammonia, and their size can range from about 50-350 nm in diameter. We studied the particle size...
متن کاملMechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.
The dimensional stability and rheological properties of a series of comb-like copolymers of N-isopropyl acrylamide (NIPAAm) and methoxy poly(ethylene glycol) methacrylate (mPEGMA), poly(NIPAAm-co-mPEGMA), with varying poly(ethylene glycol) (PEG) graft densities and molecular weights were studied. The thermoresponsive character of the copolymer solutions was investigated by kinetic and equilibri...
متن کاملConvenient synthesis of heterobifunctional poly(ethylene glycol) suitable for the functionalization of iron oxide nanoparticles for biomedical applications.
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of u...
متن کامل